Sains Malaysiana 52(10)(2023): 2869-2887

http://doi.org/10.17576/jsm-2023-5210-11

 

Metabolomics Approach using LC-Orbitrap High Resolution Mass Spectrometry and Chemometrics for Authentication of Beef Meats from Different Origins in Indonesia

(Pendekatan Metabolomik menggunakan Spektrometri Jisim Resolusi Tinggi LC-Orbitrap dan Kemometrik untuk Pengesahan Daging Lembu daripada Asalan Berbeza di Indonesia)

 

ANJAR WINDARSIH1,2, ABDUL ROHMAN3,4,*, NOR KARTINI ABU BAKAR1 & YUNY ERWANTO4,5

 

1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

2Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia

3Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

4Halal Centre, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

5Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

 

Diserahkan: 4 Januari 2023/Diterima: 19 September 2023

 

Abstract

Beef is one of the favourite meats consumed by people worldwide due to its high nutrition value needed by human development. It is highly susceptible for the adulteration practice by substituting beef with lower price meats by unethical meat traders due to the economic reasons. Therefore, the authenticity of beef meat (BM) is important because it is also related to halal status of meat which is required for certain religions. This research aimed to differentiate metabolites of BM from different origins using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for the authentication purposes.  Various metabolites mostly amino acids and lipids could be detected using methanol extraction. Principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and sparse PLS-DA were successfully used to discriminate BMs from different origins.  Fifty potential metabolite markers which are important for discrimination have been identified using variable importance projection (VIP) value extracted from PLS-DA analysis.  Metabolites of (4S)-4-{[(9Z)-3-Hydroxy-9-hexadecenoyl]oxy}-4-(trimethylammonio)butanoate, N,N-Diisopropylethylamine (DIPEA), D-sphingosine, (2E,4Z)-N-Isobutyl-2,4-octadecadienamide, 1-(14-methylhexadecanoyl)pyrrolidine, linoleic acid, 12-HAS, dodecylamine1, myristamide, and tributyl phosphate had high  responsibility in discriminating BMs from different origins (VIP value > 2.0). It can be concluded that LC-HRMS based untargeted metabolomics combined with chemometrics could be used for authentication of BMs from different regions.

 

Keywords: Beef meat; halal authentication; LC- HRMS; PLS-DA; untargeted metabolomics

 

Abstrak

Daging lembu ialah salah satu daging kegemaran yang dimakan di seluruh dunia kerana nilai pemakanannya yang tinggi yang diperlukan oleh tumbesaran manusia. Ia sangat terdedah kepada amalan pemalsuan dengan menggantikan daging lembu dengan harga daging yang lebih rendah oleh peniaga daging yang tidak beretika atas sebab ekonomi. Oleh itu, keaslian daging lembu (BM) adalah penting kerana ia juga berkaitan dengan status halal daging yang dituntut bagi agama tertentu. Penyelidikan ini bertujuan untuk membezakan metabolit BM daripada punca yang berbeza menggunakan spektrometri jisim resolusi tinggi kromatografi cecair (LC-HRMS) digabungkan dengan kemometrik untuk tujuan pengesahan. Pelbagai metabolit kebanyakannya asid amino dan lipid boleh dikesan menggunakan pengekstrakan metanol. Analisis komponen utama (PCA), analisis diskriminasi kuasa dua terkecil separa (PLS-DA) dan jarang PLS-DA berjaya digunakan untuk mendiskriminasi BM daripada punca yang berbeza. Lima puluh penanda metabolit berpotensi yang penting untuk diskriminasi telah dikenal pasti menggunakan nilai unjuran kepentingan berubah (VIP) yang diekstrak daripada analisis PLS-DA. Metabolit (4S)-4-{[(9Z)-3-Hidroksi-9-heksadesenoil]oksi}-4-(trimetilammonio)butanoate, N,N-Diisopropylethylamine (DIPEA), D-sphingosine, (2E,4Z) -N-Isobutyl-2,4-octadecadienamide, 1-(14-metilheksadesenoil)pyrrolidine, asid linoleik, 12-HAS, dodecylamine1, myristamide dan tributil fosfat mempunyai tanggungjawab yang tinggi dalam mendiskriminasi BM daripada punca yang berbeza (nilai VIP > 2.0). Dapat disimpulkan bahawa metabolomik tidak disasarkan berasaskan LC-HRMS digabungkan dengan kemometrik boleh digunakan untuk pengesahan BM dari kawasan yang berbeza.

 

Kata kunci: Daging lembu; pengesahan halal; LC- HRMS; PLS-DA; metabolomik tidak disasarkan

 

RUJUKAN

Böhme, K., Calo-Mata, P., Barros-Velázquez, J. & Ortea, I. 2019. Recent applications of omics-based technologies to main topics in food authentication. TrAC - Trends in Analytical Chemistry 110: 221-232. https://doi.org/10.1016/j.trac.2018.11.005

Callao, M.P. & Ruisánchez, I. 2018. An overview of multivariate qualitative methods for food fraud detection. Food Control 86: 283-293. https://doi.org/10.1016/J.FOODCONT.2017.11.034

Chan, M.Z.A., Lau, H., Lim, S.Y., Li, S.F.Y. & Liu, S.Q. 2021. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Research International 149: 110656. https://doi.org/10.1016/J.FOODRES.2021.110656

Häfner, L., Kalkhof, S. & Jira, W. 2021. Authentication of nine poultry species using high-performance liquid chromatography–tandem mass spectrometry. Food Control 122: 107803. https://doi.org/10.1016/J.FOODCONT.2020.107803

Jia, W., Fan, Z., Shi, Q., Zhang, R., Wang, X. & Shi, L. 2021. LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation of goat meat. Food Research International 150: 110721. https://doi.org/10.1016/j.foodres.2021.110721

Jiménez-Carvelo, A.M., Martín-Torres, S., Ortega-Gavilán, F. & Camacho, J. 2021. PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta 224: 121904. https://doi.org/10.1016/J.TALANTA.2020.121904

Jung, Y., Lee, J., Kwon, J., Lee, K.S., Ryu, D.H. & Hwang, G.S. 2010. Discrimination of the geographical origin of beef by 1H NMR-based metabolomics. Journal of Agricultural and Food Chemistry 58(19): 10458-10466. https://doi.org/10.1021/jf102194t

Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M. & Chen, Y. 2020. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 113: 107203. https://doi.org/10.1016/J.FOODCONT.2020.107203

Man, K.Y., Chan, C.O., Tang, H.H., Dong, N.P., Capozzi, F., Wong, K.H., Kwok, K.W.H., Chan, H.M. & Mok, D.K.W. 2021. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chemistry 338: 127847. https://doi.org/10.1016/j.foodchem.2020.127847

Martuscelli, M., Serio, A., Capezio, O. & Mastrocola, D. 2020. Safety, quality and analytical authentication of halal meat products, with particular emphasis on salami: A review. Foods 9(8): 1-19. https://doi.org/10.3390/foods9081111

Motoyama, M., Nakajima, I., Ohmori, H., Watanabe, G. & Sasaki, K. 2018. Raman spectroscopic method of evaluating fat crystalline states and its application in detecting pork fat. Japan Agricultural Research Quarterly 52(1): 17-22. https://doi.org/10.6090/jarq.52.17

Owolabi, I.O. & Olayinka, J.A. 2021. Incidence of fraud and adulterations in ASEAN food/feed exports: A 20-year analysis of RASFF’s notifications. PLoS ONE 16(11): e0259298. https://doi.org/10.1371/journal.pone.0259298

Panseri, S., Arioli, F., Pavlovic, R., Di Cesare, F., Nobile, M., Mosconi, G., Villa, R., Chiesa, L.M. & Bonerba, E. 2022. Impact of irradiation on metabolomics profile of ground meat and its implications toward food safety. LWT-Food Science and Technology 161: 113305. https://doi.org/10.1016/J.LWT.2022.113305

Paul, A., De, P. & Harrington, B. 2021. Chemometric applications in metabolomic studies using chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry 135: Article#116165. https://doi.org/10.1016/J.TRAC.2020.116165

Perez-Palacios, T., Solomando, J.C., Ruiz-Carrascal, J. & Antequera, T. 2022. Improvements in the methodology for fatty acids analysis in meat products: One-stage transmethylation and fast-GC method. Food Chemistry 371: 130995. https://doi.org/10.1016/j.foodchem.2021.130995

Pranata, A.W., Yuliana, N.D., Amalia, L. & Darmawan, N. 2021. Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian Journal of Chemistry 14(5): 103146. https://doi.org/10.1016/J.ARABJC.2021.103146

Rohman, A., Himawati, A., Triyana, K., Sismindari & Fatimah, S. 2016. Identification of pork in beef meatballs using Fourier transform infrared spectrophotometry and real-time polymerase chain reaction. International Journal of Food Properties 20(3): 654-661. https://doi.org/10.1080/10942912.2016.1174940

Saleem, F., Ametaj, B.N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S.M. & Wishart, D.S. 2012. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. Journal of Dairy Science 95(11): 6606-6623. https://doi.org/10.3168/JDS.2012-5403

Schieber, A. 2018. Introduction to food authentication. In Modern Techniques for Food Authentication. 2nd ed. Elsevier Inc. pp. 1-21. https://doi.org/10.1016/b978-0-12-814264-6.00001-3

Sidwick, K.L., Johnson, A.E., Adam, C.D., Pereira, L. & Thompson, D.F. 2017. Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabonomic profiling to differentiate between normally slaughtered and dead on arrival poultry meat. Analytical Chemistry 89(22): 12131-12136. https://doi.org/10.1021/acs.analchem.7b02749

Trimigno, A., Münger, L., Picone, G., Freiburghaus, C., Pimentel, G., Vionnet, N., Pralong, F., Capozzi, F., Badertscher, R. & Vergères, G. 2018. GC-MS based metabolomics and NMR spectroscopy investigation of food intake biomarkers for milk and cheese in serum of healthy humans. Metabolites 8(2): 1-27. https://doi.org/10.3390/metabo8020026

Von Bargen, C., Brockmeyer, J. & Humpf, H.U. 2014. Meat authentication: A new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. Journal of Agricultural and Food Chemistry 62(39): 9428-9435. https://doi.org/10.1021/jf503468t

Wang, J., Xu, Z., Zhang, H., Wang, Y., Liu, X., Wang, Q., Xue, J., Zhao, Y. & Yang, S. 2021. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Science 173: 108374. https://doi.org/10.1016/j.meatsci.2020.108374

Wang, K., Xu, L., Wang, X., Chen, A. & Xu, Z. 2021. Discrimination of beef from different origins based on lipidomics: A comparison study of DART-QTOF and LC-ESI-QTOF. LWT-Food Science and Technology 149: 111838. https://doi.org/10.1016/j.lwt.2021.111838

Wang, X., Jiang, G., Kebreab, E., Li, J., Feng, X., Li, C., Zhang, X., Huang, X., Fang, C., Fang, R. & Dai, Q. 2020. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Research International 133: 109126. https://doi.org/10.1016/j.foodres.2020.109126

Windarsih, A., Suratno, Warmiko, H.D., Indrianingsih, AW., Rohman, A. & Ulumuddin, Y.I. 2022. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chemistry 386: 132856. https://doi.org/10.1016/J.FOODCHEM.2022.132856

Worley, B. & Powers, R. 2016. PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics 4(2): 97-103.

Zeki, Ö.C., Eylem, C.C., Reçber, T., Kır, S. & Nemutlu, E. 2020. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. Journal of Pharmaceutical and Biomedical Analysis 190: 113509. https://doi.org/10.1016/j.jpba.2020.113509

 

*Pengarang untuk surat-menyurat; email: abdul_kimfar@ugm.ac.id

 

 

 

 

 

 

 

 

   

sebelumnya