Sains Malaysiana 52(10)(2023): 2869-2887
http://doi.org/10.17576/jsm-2023-5210-11
Metabolomics Approach using LC-Orbitrap High Resolution Mass Spectrometry and Chemometrics for Authentication of Beef Meats from
Different Origins in Indonesia
(Pendekatan Metabolomik menggunakan Spektrometri Jisim Resolusi Tinggi LC-Orbitrap dan Kemometrik untuk Pengesahan Daging Lembu daripada Asalan Berbeza di
Indonesia)
ANJAR
WINDARSIH1,2, ABDUL ROHMAN3,4,*, NOR KARTINI ABU BAKAR1 & YUNY ERWANTO4,5
1Department of Chemistry,
Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Research Center for Food Technology and Processing (PRTPP), National
Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia
3Department of
Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta,
55281, Indonesia
4Halal Centre, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
5Faculty of Animal
Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Diserahkan: 4 Januari 2023/Diterima: 19
September 2023
Abstract
Beef
is one of the favourite meats consumed by people worldwide due to its high
nutrition value needed by human development. It is highly susceptible for the
adulteration practice by substituting beef with lower price meats by unethical
meat traders due to the economic reasons. Therefore, the authenticity of beef
meat (BM) is important because it is also related to halal status of meat which
is required for certain religions. This research aimed to differentiate metabolites
of BM from different origins using liquid chromatography-high resolution mass
spectrometry (LC-HRMS) combined with chemometrics for
the authentication purposes. Various
metabolites mostly amino acids and lipids could be detected using methanol
extraction. Principal component analysis (PCA), partial least
square-discriminant analysis (PLS-DA) and sparse PLS-DA were successfully used
to discriminate BMs from different origins. Fifty potential metabolite markers which are important for
discrimination have been identified using variable importance projection (VIP)
value extracted from PLS-DA analysis. Metabolites of (4S)-4-{[(9Z)-3-Hydroxy-9-hexadecenoyl]oxy}-4-(trimethylammonio)butanoate, N,N-Diisopropylethylamine (DIPEA),
D-sphingosine, (2E,4Z)-N-Isobutyl-2,4-octadecadienamide,
1-(14-methylhexadecanoyl)pyrrolidine, linoleic acid,
12-HAS, dodecylamine1, myristamide, and tributyl phosphate had high responsibility in discriminating BMs from different origins (VIP value
> 2.0). It can be concluded that LC-HRMS based untargeted metabolomics
combined with chemometrics could be used for
authentication of BMs from different regions.
Keywords: Beef meat; halal authentication; LC- HRMS; PLS-DA;
untargeted metabolomics
Abstrak
Daging lembu ialah salah satu daging kegemaran yang dimakan di seluruh dunia kerana nilai pemakanannya yang tinggi yang diperlukan oleh tumbesaran manusia. Ia sangat terdedah kepada amalan pemalsuan dengan menggantikan daging lembu dengan harga daging yang lebih rendah oleh peniaga daging yang tidak beretika atas sebab ekonomi. Oleh itu, keaslian daging lembu (BM) adalah penting kerana ia juga berkaitan dengan status halal daging yang dituntut bagi agama tertentu. Penyelidikan ini bertujuan untuk membezakan metabolit BM daripada punca yang berbeza menggunakan spektrometri jisim resolusi tinggi kromatografi cecair (LC-HRMS) digabungkan dengan kemometrik untuk tujuan pengesahan. Pelbagai metabolit kebanyakannya asid amino dan lipid boleh dikesan menggunakan pengekstrakan metanol. Analisis komponen utama (PCA), analisis diskriminasi kuasa dua terkecil separa (PLS-DA) dan jarang PLS-DA berjaya digunakan untuk mendiskriminasi BM daripada punca yang berbeza. Lima puluh penanda metabolit berpotensi yang penting untuk diskriminasi telah dikenal pasti menggunakan nilai unjuran kepentingan berubah (VIP) yang diekstrak daripada analisis PLS-DA. Metabolit (4S)-4-{[(9Z)-3-Hidroksi-9-heksadesenoil]oksi}-4-(trimetilammonio)butanoate,
N,N-Diisopropylethylamine (DIPEA), D-sphingosine,
(2E,4Z) -N-Isobutyl-2,4-octadecadienamide, 1-(14-metilheksadesenoil)pyrrolidine, asid linoleik, 12-HAS, dodecylamine1, myristamide dan tributil fosfat mempunyai tanggungjawab yang tinggi dalam mendiskriminasi BM daripada punca yang berbeza (nilai VIP > 2.0). Dapat disimpulkan bahawa metabolomik tidak disasarkan berasaskan LC-HRMS digabungkan dengan kemometrik boleh digunakan untuk pengesahan BM dari kawasan yang berbeza.
Kata kunci: Daging lembu; pengesahan halal; LC-
HRMS; PLS-DA; metabolomik tidak disasarkan
RUJUKAN
Böhme,
K., Calo-Mata, P., Barros-Velázquez, J. & Ortea, I. 2019. Recent
applications of omics-based technologies to main topics in food authentication. TrAC - Trends in Analytical Chemistry 110: 221-232.
https://doi.org/10.1016/j.trac.2018.11.005
Callao, M.P. & Ruisánchez, I. 2018. An overview of multivariate
qualitative methods for food fraud detection. Food Control 86: 283-293.
https://doi.org/10.1016/J.FOODCONT.2017.11.034
Chan, M.Z.A., Lau, H., Lim, S.Y., Li, S.F.Y. & Liu, S.Q. 2021.
Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive
components in probiotic fermented coffee brews. Food Research International 149: 110656. https://doi.org/10.1016/J.FOODRES.2021.110656
Häfner, L., Kalkhof, S. & Jira, W. 2021. Authentication of nine
poultry species using high-performance liquid chromatography–tandem mass
spectrometry. Food Control 122: 107803.
https://doi.org/10.1016/J.FOODCONT.2020.107803
Jia, W., Fan, Z., Shi, Q., Zhang, R., Wang, X. & Shi, L. 2021.
LC-MS-based metabolomics reveals metabolite dynamic changes during irradiation
of goat meat. Food Research International 150: 110721.
https://doi.org/10.1016/j.foodres.2021.110721
Jiménez-Carvelo, A.M., Martín-Torres, S., Ortega-Gavilán, F. &
Camacho, J. 2021. PLS-DA vs sparse PLS-DA in food traceability. A case study:
Authentication of avocado samples. Talanta 224: 121904.
https://doi.org/10.1016/J.TALANTA.2020.121904
Jung, Y., Lee, J., Kwon, J., Lee, K.S., Ryu, D.H. & Hwang, G.S. 2010.
Discrimination of the geographical origin of beef by 1H NMR-based metabolomics. Journal of Agricultural and Food Chemistry 58(19): 10458-10466.
https://doi.org/10.1021/jf102194t
Leng, T., Li, F., Xiong, L., Xiong, Q., Zhu, M. & Chen, Y. 2020.
Quantitative detection of binary and ternary adulteration of minced beef meat
with pork and duck meat by NIR combined with chemometrics. Food Control 113: 107203. https://doi.org/10.1016/J.FOODCONT.2020.107203
Man, K.Y., Chan, C.O., Tang, H.H., Dong, N.P., Capozzi, F., Wong, K.H.,
Kwok, K.W.H., Chan, H.M. & Mok, D.K.W. 2021. Mass spectrometry-based
untargeted metabolomics approach for differentiation of beef of different
geographic origins. Food Chemistry 338: 127847.
https://doi.org/10.1016/j.foodchem.2020.127847
Martuscelli, M., Serio, A., Capezio, O. & Mastrocola, D. 2020. Safety,
quality and analytical authentication of halal meat products, with particular
emphasis on salami: A review. Foods 9(8): 1-19.
https://doi.org/10.3390/foods9081111
Motoyama, M., Nakajima, I., Ohmori, H., Watanabe, G. & Sasaki, K.
2018. Raman spectroscopic method of evaluating fat crystalline states and its
application in detecting pork fat. Japan Agricultural Research Quarterly 52(1): 17-22. https://doi.org/10.6090/jarq.52.17
Owolabi, I.O. & Olayinka, J.A. 2021. Incidence of fraud and
adulterations in ASEAN food/feed exports: A 20-year analysis of RASFF’s
notifications. PLoS ONE 16(11): e0259298.
https://doi.org/10.1371/journal.pone.0259298
Panseri, S., Arioli, F., Pavlovic, R., Di Cesare, F., Nobile, M., Mosconi,
G., Villa, R., Chiesa, L.M. & Bonerba, E. 2022. Impact of irradiation on
metabolomics profile of ground meat and its implications toward food safety. LWT-Food
Science and Technology 161: 113305. https://doi.org/10.1016/J.LWT.2022.113305
Paul, A., De, P. & Harrington, B. 2021. Chemometric applications in
metabolomic studies using chromatography-mass spectrometry. TrAC Trends in
Analytical Chemistry 135: Article#116165.
https://doi.org/10.1016/J.TRAC.2020.116165
Perez-Palacios, T., Solomando, J.C., Ruiz-Carrascal, J. & Antequera,
T. 2022. Improvements in the methodology for fatty acids analysis in meat
products: One-stage transmethylation and fast-GC method. Food Chemistry 371: 130995. https://doi.org/10.1016/j.foodchem.2021.130995
Pranata, A.W., Yuliana, N.D., Amalia, L. & Darmawan, N. 2021.
Volatilomics for halal and non-halal meatball authentication
using solid-phase microextraction–gas chromatography–mass spectrometry. Arabian
Journal of Chemistry 14(5): 103146. https://doi.org/10.1016/J.ARABJC.2021.103146
Rohman, A., Himawati, A., Triyana, K., Sismindari & Fatimah, S. 2016.
Identification of pork in beef meatballs using Fourier transform infrared
spectrophotometry and real-time polymerase chain reaction. International Journal
of Food Properties 20(3): 654-661.
https://doi.org/10.1080/10942912.2016.1174940
Saleem, F., Ametaj, B.N., Bouatra, S., Mandal, R., Zebeli, Q., Dunn, S.M.
& Wishart, D.S. 2012. A metabolomics approach to uncover the effects of
grain diets on rumen health in dairy cows. Journal of Dairy Science 95(11): 6606-6623. https://doi.org/10.3168/JDS.2012-5403
Schieber, A. 2018. Introduction to food authentication. In Modern
Techniques for Food Authentication. 2nd ed. Elsevier Inc. pp. 1-21.
https://doi.org/10.1016/b978-0-12-814264-6.00001-3
Sidwick, K.L., Johnson, A.E., Adam, C.D., Pereira, L. & Thompson, D.F.
2017. Use of liquid chromatography quadrupole time-of-flight mass spectrometry
and metabonomic profiling to differentiate between normally slaughtered and
dead on arrival poultry meat. Analytical Chemistry 89(22): 12131-12136.
https://doi.org/10.1021/acs.analchem.7b02749
Trimigno, A., Münger, L., Picone, G., Freiburghaus, C., Pimentel, G.,
Vionnet, N., Pralong, F., Capozzi, F., Badertscher, R. & Vergères, G. 2018.
GC-MS based metabolomics and NMR spectroscopy investigation of food intake
biomarkers for milk and cheese in serum of healthy humans. Metabolites 8(2): 1-27. https://doi.org/10.3390/metabo8020026
Von Bargen, C., Brockmeyer, J. & Humpf, H.U. 2014. Meat
authentication: A new HPLC-MS/MS based method for the fast and sensitive
detection of horse and pork in highly processed food. Journal of
Agricultural and Food Chemistry 62(39): 9428-9435. https://doi.org/10.1021/jf503468t
Wang, J., Xu, Z., Zhang, H., Wang, Y., Liu, X., Wang, Q., Xue, J., Zhao,
Y. & Yang, S. 2021. Meat differentiation between pasture-fed and
concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight
mass spectrometry combined with metabolomic and lipidomic profiling. Meat
Science 173: 108374. https://doi.org/10.1016/j.meatsci.2020.108374
Wang, K., Xu, L., Wang, X., Chen, A. & Xu, Z. 2021. Discrimination of
beef from different origins based on lipidomics: A comparison study of
DART-QTOF and LC-ESI-QTOF. LWT-Food Science and Technology 149: 111838.
https://doi.org/10.1016/j.lwt.2021.111838
Wang, X., Jiang, G., Kebreab, E., Li, J., Feng, X., Li, C., Zhang, X.,
Huang, X., Fang, C., Fang, R. & Dai, Q. 2020. 1H NMR-based metabolomics
study of breast meat from Pekin and Linwu duck of different ages and relation
to meat quality. Food Research International 133: 109126.
https://doi.org/10.1016/j.foodres.2020.109126
Windarsih, A., Suratno, Warmiko, H.D., Indrianingsih, AW., Rohman, A.
& Ulumuddin, Y.I. 2022. Untargeted metabolomics and proteomics approach
using liquid chromatography-Orbitrap high resolution mass spectrometry to
detect pork adulteration in Pangasius hypopthalmus meat. Food
Chemistry 386: 132856. https://doi.org/10.1016/J.FOODCHEM.2022.132856
Worley, B. & Powers, R. 2016. PCA as a practical indicator of OPLS-DA
model reliability. Current Metabolomics 4(2): 97-103.
Zeki, Ö.C., Eylem, C.C., Reçber, T., Kır, S. & Nemutlu, E. 2020.
Integration of GC–MS and LC–MS for untargeted metabolomics profiling. Journal
of Pharmaceutical and Biomedical Analysis 190: 113509.
https://doi.org/10.1016/j.jpba.2020.113509
*Pengarang untuk surat-menyurat; email: abdul_kimfar@ugm.ac.id
|